Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
PLOS Digit Health ; 1(1): e0000007, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-2256853

ABSTRACT

Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care.

2.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: covidwho-2283975

ABSTRACT

BACKGROUNDAfter its introduction as standard-of-care for severe COVID-19, dexamethasone has been administered to a large number of patients globally. Detailed knowledge of its impact on the cellular and humoral immune response to SARS-CoV-2 remains scarce.METHODSWe included immunocompetent individuals with (a) mild COVID-19, (b) severe COVID-19 before introduction of dexamethasone treatment, and (c) severe COVID-19 infection treated with dexamethasone from prospective observational cohort studies at Charité-Universitätsmedizin Berlin, Germany. We analyzed SARS-CoV-2 spike-reactive T cells, spike-specific IgG titers, and serum neutralizing activity against B.1.1.7 and B.1.617.2 in samples ranging from 2 weeks to 6 months after infection. We also analyzed BA.2 neutralization in sera after booster immunization.RESULTSPatients with severe COVID-19 and dexamethasone treatment had lower T cell and antibody responses to SARS-CoV-2 compared with patients without dexamethasone treatment in the early phase of disease, which converged in both groups before 6 months after infection and also after immunization. Patients with mild COVID-19 had comparatively lower T cell and antibody responses than patients with severe disease, including a lower response to booster immunization during convalescence.CONCLUSIONDexamethasone treatment was associated with a short-term reduction in T cell and antibody responses in severe COVID-19 when compared with the nontreated group, but this difference evened out 6 months after infection. We confirm higher cellular and humoral immune responses in patients after severe versus mild COVID-19 and the concept of improved hybrid immunity upon immunization.FUNDINGBerlin Institute of Health, German Federal Ministry of Education, and German Federal Institute for Drugs and Medical Devices.


Subject(s)
Antibody Formation , COVID-19 , Humans , SARS-CoV-2 , COVID-19 Drug Treatment , T-Lymphocytes , Immunization, Secondary , Dexamethasone/therapeutic use
4.
RMD open ; 8(2), 2022.
Article in English | EuropePMC | ID: covidwho-2156704

ABSTRACT

Objective The development of sufficient COVID-19 vaccines has been a big breakthrough in fighting the global SARS-CoV-2 pandemic. However, vaccination effectiveness can be reduced in patients with autoimmune rheumatic diseases (AIRD). The aim of this study was to identify factors that lead to a diminished humoral vaccination response in patients with AIRD. Methods Vaccination response was measured with a surrogate virus neutralisation test and by testing for antibodies directed against the receptor-binding-domain (RBD) of SARS-CoV-2 in 308 fully vaccinated patients with AIRD. In addition, 296 immunocompetent participants were investigated as a control group. Statistical adjusted analysis included covariates with a possible influence on antibody response. Results Patients with AIRD showed lower antibody responses compared with immunocompetent individuals (median neutralising capacity 90.8% vs 96.5%, p<0.001;median anti-RBD-IgG 5.6 S/CO vs 6.7 S/CO, p<0.001). Lower antibody response was significantly influenced by type of immunosuppressive therapy, but not by rheumatic diagnosis, with patients under rituximab therapy developing the lowest antibody levels. Patients receiving mycophenolate, methotrexate or janus kinase inhibitors also showed reduced vaccination responses. Additional negative influencing factors were vaccination with AZD1222, old age and shorter intervals between the first two vaccinations. Conclusion Certain immunosuppressive therapies are associated with lower antibody responses after vaccination. Additional factors such as vaccine type, age and vaccination interval should be taken into account. We recommend antibody testing in at-risk patients with AIRD and emphasise the importance of booster vaccinations in these patients.

5.
Antimicrob Agents Chemother ; 66(11): e0122922, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2088397

ABSTRACT

Nirmatrelvir/ritonavir is an effective antiviral therapy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Use is not recommended in patients with end-stage renal disease (ESDR) due to a lack of data. We investigated the pharmacokinetics of nirmatrelvir/ritonavir (150 mg/100 mg twice a day) in four patients with ESRD undergoing hemodialysis. Nirmatrelvir peak concentrations ranged from 4,563 to 7,898 ng/mL and declined after hemodialysis. Concentrations were up to 4-fold higher but still within the range known from patients without ESRD, without accumulation of nirmatrelvir after the end of treatment.


Subject(s)
COVID-19 Drug Treatment , Kidney Failure, Chronic , Humans , Ritonavir/therapeutic use , SARS-CoV-2 , Kidney Failure, Chronic/drug therapy , Renal Dialysis , Antiviral Agents/therapeutic use
6.
RMD Open ; 8(2)2022 10.
Article in English | MEDLINE | ID: covidwho-2064278

ABSTRACT

OBJECTIVE: The level of neutralising capacity against Omicron BA.1 and BA.2 after third COVID-19 vaccination in patients on paused or continuous methotrexate (MTX) therapy is unclear. METHODS: In this observational cohort study, neutralising serum activity against SARS-CoV-2 wild-type (Wu01) and variant of concern Omicron BA.1 and BA.2 were assessed by pseudovirus neutralisation assay before, 4 and 12 weeks after mRNA booster immunisation in 50 rheumatic patients on MTX, 26 of whom paused the medication. 44 non-immunosuppressed persons (NIP) served as control group. RESULTS: While the neutralising serum activity against SARS-CoV-2 Wu01 and Omicron variants increased 67-73 fold in the NIP after booster vaccination, the serum activity in patients receiving MTX increased only 20-23 fold. Patients who continued MTX treatment during vaccination had significantly lower neutralisation against all variants at weeks 4 and 12 compared with patients who paused MTX and the control group, except for BA.2 at week 12. Patients who paused MTX reached comparably high neutralising capacities as NIP, except for Wu01 at week 12. The duration of the MTX pause after-not before-was associated with a significantly higher neutralisation capacity against all three variants, with an optimal duration at 10 days after vaccination. CONCLUSION: Patients pausing MTX after COVID-19 booster showed a similar vaccine response to NIP. Patients who continued MTX demonstrated an impaired response indicating a potentially beneficial second booster vaccination. Our data also suggest that a 1 week MTX break is sufficient if the last administration of MTX occurs 1-3 days before vaccination.


Subject(s)
Antirheumatic Agents , COVID-19 , Vaccines , Antirheumatic Agents/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Methotrexate/therapeutic use , SARS-CoV-2 , Vaccination
7.
EMBO Mol Med ; 14(11): e16643, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2056522

ABSTRACT

The rapid rise of monkeypox (MPX) cases outside previously endemic areas prompts for a better understanding of the disease. We studied the plasma proteome of a group of MPX patients with a similar infection history and clinical manifestation typical for the current outbreak. We report that MPX in this case series is associated with a strong plasma proteomic response among nutritional and acute phase response proteins. Moreover, we report a correlation between plasma proteins and disease severity. Contrasting the MPX host response with that of COVID-19, we find a range of similarities, but also important differences. For instance, CFHR1 is induced in COVID-19, but suppressed in MPX, reflecting the different roles of the complement system in the two infectious diseases. Of note, the spatial overlap in response proteins suggested that a COVID-19 biomarker panel assay could be repurposed for MPX. Applying a targeted protein panel assay provided encouraging results and distinguished MPX cases from healthy controls. Hence, our results provide a first proteomic characterization of the MPX human host response and encourage further research on protein-panel assays in emerging infectious diseases.


Subject(s)
COVID-19 , Monkeypox , Humans , Monkeypox/epidemiology , Monkeypox virus/physiology , Proteomics , Research
8.
J Exp Med ; 219(10)2022 10 03.
Article in English | MEDLINE | ID: covidwho-2017563

ABSTRACT

The SARS-CoV-2 pandemic prompted a global vaccination effort and the development of numerous COVID-19 vaccines at an unprecedented scale and pace. As a result, current COVID-19 vaccination regimens comprise diverse vaccine modalities, immunogen combinations, and dosing intervals. Here, we compare vaccine-specific antibody and memory B cell responses following two-dose mRNA, single-dose Ad26.COV.2S, and two-dose ChAdOx1, or combination ChAdOx1/mRNA vaccination. Plasma-neutralizing activity, as well as the magnitude, clonal composition, and antibody maturation of the RBD-specific memory B cell compartments, showed substantial differences between the vaccination regimens. While individual monoclonal antibodies derived from memory B cells exhibited similar binding affinities and neutralizing potency against Wuhan-Hu-1 SARS-CoV-2, there were significant differences in epitope specificity and neutralizing breadth against viral variants of concern. Although the ChAdOx1 vaccine was inferior to mRNA and Ad26.COV.2S in several respects, biochemical and structural analyses revealed enrichment in a subgroup of memory B cell neutralizing antibodies with distinct RBD-binding properties resulting in remarkable potency and breadth.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , RNA, Messenger , SARS-CoV-2 , Vaccination
10.
Respir Med ; 202: 106968, 2022 10.
Article in English | MEDLINE | ID: covidwho-2004473

ABSTRACT

BACKGROUND: Cardiopulmonary Exercise Testing (CPET) provides a comprehensive assessment of pulmonary, cardiovascular and musculosceletal function. Reduced CPET performance could be an indicator for chronic morbidity after COVID-19. METHODS: Patients ≥18 years with confirmed PCR positive SARS-CoV-2 infection were offered to participate in a prospective observational study of clinical course and outcomes of COVID-19. 54 patients completed CPET, questionnaires on respiratory quality of life and performed pulmonary function tests 12 months after SARS-CoV-2 infection. RESULTS: At 12 months after SARS-CoV-2 infection, 46.3% of participants had a peak performance and 33.3% a peak oxygen uptake of <80% of the predicted values, respectively. Further impairments were observed in diffusion capacity and ventilatory efficiency. Functional limitations were particularly pronounced in patients after invasive mechanical ventilation and extracorporeal membrane oxygenation treatment. Ventilatory capacity was reduced <80% of predicted values in 55.6% of participants, independent from initial clinical severity. Patient reported dyspnea and respiratory quality of life after COVID-19 correlated with CPET performance and parameters of gas exchange. Risk factors for reduced CPET performance 12 months after COVID-19 were prior intensive care treatment (OR 5.58, p = 0.004), SGRQ outcome >25 points (OR 3.48, p = 0.03) and reduced DLCO (OR 3.01, p = 0.054). CONCLUSIONS: Functional limitations causing chronic morbidity in COVID-19 survivors persist over 12 months after SARS-CoV-2 infection. These limitations were particularly seen in parameters of overall performance and gas exchange resulting from muscular deconditioning and lung parenchymal changes. Patient reported reduced respiratory quality of life was a risk factor for adverse CPET performance.


Subject(s)
COVID-19 , Exercise Test , COVID-19/diagnosis , Exercise Test/methods , Exercise Tolerance , Humans , Oxygen , Quality of Life , SARS-CoV-2 , Severity of Illness Index
11.
iScience ; 25(10): 105040, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2004160

ABSTRACT

COVID-19 has highly variable clinical courses. The search for prognostic host factors for COVID-19 outcome is a priority. We performed logistic regression for ICU admission against a polygenic score (PGS) for Cystatin C (CyC) production in patients with COVID-19. We analyzed the predictive value of longitudinal plasma CyC levels in an independent cohort of patients hospitalized with COVID-19. In four cohorts spanning European and African ancestry populations, we identified a significant association between CyC-production PGS and odds of critical illness (n cases=2,319), with the strongest association captured in the UKB cohort (OR 2.13, 95% CI 1.58-2.87, p=7.12e-7). Plasma proteomics from an independent cohort of hospitalized COVID-19 patients (n cases = 131) demonstrated that CyC production was associated with COVID-specific mortality (p=0.0007). Our findings suggest that CyC may be useful for stratification of patients and it has functional role in the host response to COVID-19.

12.
Cell Host Microbe ; 30(9): 1231-1241.e6, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1982766

ABSTRACT

SARS-CoV-2 neutralizing antibodies play a critical role in COVID-19 prevention and treatment but are challenged by viral evolution and the emergence of novel escape variants. Importantly, the recently identified Omicron sublineages BA.2.12.1 and BA.4/5 are rapidly becoming predominant in various countries. By determining polyclonal serum activity of 50 convalescent or vaccinated individuals against BA.1, BA.1.1, BA.2, BA.2.12.1, and BA.4/5, we reveal a further reduction in BA.4/5 susceptibility to vaccinee sera. Most notably, delineation of sensitivity to an extended 163-antibody panel demonstrates pronounced antigenic differences with distinct escape patterns among Omicron sublineages. Antigenic distance and/or higher resistance may therefore favor immune-escape-mediated BA.4/5 expansion after the first Omicron wave. Finally, while most clinical-stage monoclonal antibodies are inactive against Omicron sublineages, we identify promising antibodies with high pan-SARS-CoV-2 neutralizing potency. Our study provides a detailed understanding of Omicron-sublineage antibody escape that can inform on effective strategies against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics
13.
EClinicalMedicine ; 49: 101495, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1881937

ABSTRACT

Background: Global healthcare systems continue to be challenged by the COVID-19 pandemic, and there is a need for clinical assays that can help optimise resource allocation, support treatment decisions, and accelerate the development and evaluation of new therapies. Methods: We developed a multiplexed proteomics assay for determining disease severity and prognosis in COVID-19. The assay quantifies up to 50 peptides, derived from 30 known and newly introduced COVID-19-related protein markers, in a single measurement using routine-lab compatible analytical flow rate liquid chromatography and multiple reaction monitoring (LC-MRM). We conducted two observational studies in patients with COVID-19 hospitalised at Charité - Universitätsmedizin Berlin, Germany before (from March 1 to 26, 2020, n=30) and after (from April 4 to November 19, 2020, n=164) dexamethasone became standard of care. The study is registered in the German and the WHO International Clinical Trials Registry (DRKS00021688). Findings: The assay produces reproducible (median inter-batch CV of 10.9%) absolute quantification of 47 peptides with high sensitivity (median LLOQ of 143 ng/ml) and accuracy (median 96.8%). In both studies, the assay reproducibly captured hallmarks of COVID-19 infection and severity, as it distinguished healthy individuals, mild, moderate, and severe COVID-19. In the post-dexamethasone cohort, the assay predicted survival with an accuracy of 0.83 (108/130), and death with an accuracy of 0.76 (26/34) in the median 2.5 weeks before the outcome, thereby outperforming compound clinical risk assessments such as SOFA, APACHE II, and ABCS scores. Interpretation: Disease severity and clinical outcomes of patients with COVID-19 can be stratified and predicted by the routine-applicable panel assay that combines known and novel COVID-19 biomarkers. The prognostic value of this assay should be prospectively assessed in larger patient cohorts for future support of clinical decisions, including evaluation of sample flow in routine setting. The possibility to objectively classify COVID-19 severity can be helpful for monitoring of novel therapies, especially in early clinical trials. Funding: This research was funded in part by the European Research Council (ERC) under grant agreement ERC-SyG-2020 951475 (to M.R) and by the Wellcome Trust (IA 200829/Z/16/Z to M.R.). The work was further supported by the Ministry of Education and Research (BMBF) as part of the National Research Node 'Mass Spectrometry in Systems Medicine (MSCoresys)', under grant agreements 031L0220 and 161L0221. J.H. was supported by a Swiss National Science Foundation (SNSF) Postdoc Mobility fellowship (project number 191052). This study was further supported by the BMBF grant NaFoUniMedCOVID-19 - NUM-NAPKON, FKZ: 01KX2021. The study was co-funded by the UK's innovation agency, Innovate UK, under project numbers 75594 and 56328.

14.
Infection ; 50(6): 1441-1452, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1787897

ABSTRACT

PURPOSE: To investigate antimicrobial use and primary and nosocomial infections in hospitalized COVID-19 patients to provide data for guidance of antimicrobial therapy. METHODS: Prospective observational cohort study conducted at Charité-Universitätsmedizin Berlin, including patients hospitalized with SARS-CoV-2-infection between March and November 2020. RESULTS: 309 patients were included, 231 directly admitted and 78 transferred from other centres. Antimicrobial therapy was initiated in 62/231 (26.8%) of directly admitted and in 44/78 (56.4%) of transferred patients. The rate of microbiologically confirmed primary co-infections was 4.8% (11/231). Although elevated in most COVID-19 patients, C-reactive protein and procalcitonin levels were higher in patients with primary co-infections than in those without (median CRP 110 mg/l, IQR 51-222 vs. 36, IQR 11-101, respectively; p < 0.0001). Nosocomial bloodstream and respiratory infections occurred in 47/309 (15.2%) and 91/309 (29.4%) of patients, respectively, and were associated with need for invasive mechanical ventilation (OR 45.6 95%CI 13.7-151.8 and 104.6 95%CI 41.5-263.5, respectively), extracorporeal membrane oxygenation (OR 14.3 95%CI 6.5-31.5 and 16.5 95%CI 6.5-41.6, respectively), and haemodialysis (OR 31.4 95%CI 13.9-71.2 and OR 22.3 95%CI 11.2-44.2, respectively). The event of any nosocomial infection was significantly associated with in-hospital death (33/99 (33.3%) with nosocomial infection vs. 23/210 (10.9%) without, OR 4.1 95%CI 2.2-7.3). CONCLUSIONS: Primary co-infections are rare, yet antimicrobial use was frequent, mostly based on clinical worsening and elevated inflammation markers without clear evidence for co-infection. More reliable diagnostic prospects may help to reduce overtreatment. Rates of nosocomial infections are substantial in severely ill patients on organ support and associated with worse patient outcome.


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , COVID-19 , Coinfection , Cross Infection , Humans , COVID-19/epidemiology , Coinfection/drug therapy , Coinfection/epidemiology , SARS-CoV-2 , Hospital Mortality , Prospective Studies , Anti-Infective Agents/therapeutic use , Cross Infection/drug therapy , Cross Infection/epidemiology
15.
Emerg Infect Dis ; 28(5): 1050-1052, 2022 05.
Article in English | MEDLINE | ID: covidwho-1731731

ABSTRACT

To determine neutralizing activity against the severe acute respiratory syndrome coronavirus 2 ancestral strain and 4 variants of concern, we tested serum from 30 persons with breakthrough infection after 2-dose vaccination. Cross-variant neutralizing activity was comparable to that after 3-dose vaccination. Shorter intervals between vaccination and breakthrough infection correlated with lower neutralizing titers.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2 , Vaccination
17.
Wien Klin Wochenschr ; 134(9-10): 361-370, 2022 May.
Article in English | MEDLINE | ID: covidwho-1640856

ABSTRACT

BACKGROUND: The SARS-CoV­2 pandemic has extensively challenged healthcare systems all over the world. Many elective operations were postponed or cancelled, changing priorities and workflows in surgery departments. AIMS: The primary aim of this cross-sectional study was to assess the workload and psychosocial burden of surgeons and anesthesiologists, working in German hospitals during the first wave of SARS-CoV­2 infections in 2020. METHODS: Quantitative online survey on the workplace situation including psychosocial and work-related stress factors among resident and board-certified surgeons and anesthesiologists. Physicians in German hospitals across all levels of healthcare were contacted via departments, professional associations and social media posts. RESULTS: Among 154 total study participants, 54% of respondents stated a lack of personal protective equipment in their own wards and 56% reported increased staff shortages since the onset of the pandemic. While routine practice was reported as fully resumed in 71% of surgery departments at the time of the survey, work-related dissatisfaction among responding surgeons and anesthesiologists increased from 24% before the pandemic to 36% after the first wave of infections. As a countermeasure, 94% of participants deemed the establishment of action plans to increase pandemic preparedness and strengthening German public health systems a useful measure to respond to current challenges. CONCLUSION: The aftermath of the first wave of SARS-CoV­2 infections in Germany has left the surgical staff strained, despite temporarily decreased workloads. Overall, a critical review of the altered conditions is indispensable to identify and promote effective solutions and prudent action plans required to address imminent challenges.


Subject(s)
Anesthesiology , COVID-19 , Physicians , COVID-19/epidemiology , Cross-Sectional Studies , Germany/epidemiology , Humans , SARS-CoV-2 , Surveys and Questionnaires
18.
Nat Med ; 28(3): 477-480, 2022 03.
Article in English | MEDLINE | ID: covidwho-1632860

ABSTRACT

The Omicron variant of SARS-CoV-2 is causing a rapid increase in infections across the globe. This new variant of concern carries an unusually high number of mutations in key epitopes of neutralizing antibodies on the viral spike glycoprotein, suggesting potential immune evasion. Here we assessed serum neutralizing capacity in longitudinal cohorts of vaccinated and convalescent individuals, as well as monoclonal antibody activity against Omicron using pseudovirus neutralization assays. We report a near-complete lack of neutralizing activity against Omicron in polyclonal sera from individuals vaccinated with two doses of the BNT162b2 COVID-19 vaccine and from convalescent individuals, as well as resistance to different monoclonal antibodies in clinical use. However, mRNA booster immunizations in vaccinated and convalescent individuals resulted in a significant increase of serum neutralizing activity against Omicron. This study demonstrates that booster immunizations can critically improve the humoral immune response against the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunization, Secondary , RNA, Messenger , SARS-CoV-2/genetics
19.
Lancet Respir Med ; 9(11): 1255-1265, 2021 11.
Article in English | MEDLINE | ID: covidwho-1594095

ABSTRACT

BACKGROUND: Heterologous vaccine regimens have been widely discussed as a way to mitigate intermittent supply shortages and to improve immunogenicity and safety of COVID-19 vaccines. We aimed to assess the reactogenicity and immunogenicity of heterologous immunisations with ChAdOx1 nCov-19 (AstraZeneca, Cambridge, UK) and BNT162b2 (Pfizer-BioNtech, Mainz, Germany) compared with homologous BNT162b2 and ChAdOx1 nCov-19 immunisation. METHODS: This is an interim analysis of a prospective observational cohort study enrolling health-care workers in Berlin (Germany) who received either homologous ChAdOx1 nCov-19 or heterologous ChAdOx1 nCov-19-BNT162b2 vaccination with a 10-12-week vaccine interval or homologous BNT162b2 vaccination with a 3-week vaccine interval. We assessed reactogenicity after the first and second vaccination by use of electronic questionnaires on days 1, 3, 5, and 7. Immunogenicity was measured by the presence of SARS-CoV-2-specific antibodies (full spike-IgG, S1-IgG, and RBD-IgG), by an RBD-ACE2 binding inhibition assay (surrogate SARS-CoV-2 virus neutralisation test), a pseudovirus neutralisation assay against two variants of concerns (alpha [B.1.1.7] and beta [B.1.351]), and anti-S1-IgG avidity. T-cell reactivity was measured by IFN-γ release assay. FINDINGS: Between Dec 27, 2020, and June 14, 2021, 380 participants were enrolled in the study, with 174 receiving homologous BNT162b2 vaccination, 38 receiving homologous ChAdOx1 nCov-19 vaccination, and 104 receiving ChAdOx1 nCov-19-BNT162b2 vaccination. Systemic symptoms were reported by 103 (65%, 95% CI 57·1-71·8) of 159 recipients of homologous BNT162b2, 14 (39%, 24·8-55·1) of 36 recipients of homologous ChAdOx1 nCov-19, and 51 (49%, 39·6-58·5) of 104 recipients of ChAdOx1 nCov-19-BNT162b2 after the booster immunisation. Median anti-RBD IgG levels 3 weeks after boost immunisation were 5·4 signal to cutoff ratio (S/co; IQR 4·8-5·9) in recipients of homologous BNT162b2, 4·9 S/co (4·3-5·6) in recipients of homologous ChAdOx1 nCov-19, and 5·6 S/co (5·1-6·1) in recipients of ChAdOx1 nCov-19- BNT162b2. Geometric mean of 50% inhibitory dose against alpha and beta variants were highest in recipients of ChAdOx1 nCov-19-BNT162b2 (956·6, 95% CI 835·6-1095, against alpha and 417·1, 349·3-498·2, against beta) compared with those in recipients of homologous ChAdOx1 nCov-19 (212·5, 131·2-344·4, against alpha and 48·5, 28·4-82·8, against beta; both p<0·0001) or homologous BNT162b2 (369·2, 310·7-438·6, against alpha and 72·4, 60·5-86·5, against beta; both p<0·0001). SARS-CoV-2 S1 T-cell reactivity 3 weeks after boost immunisation was highest in recipients of ChAdOx1 nCov-19-BNT162b2 (median IFN-γ concentration 4762 mIU/mL, IQR 2723-8403) compared with that in recipients of homologous ChAdOx1 nCov-19 (1061 mIU/mL, 599-2274, p<0·0001) and homologous BNT162b2 (2026 mIU/mL, 1459-4621, p=0·0008) vaccination. INTERPRETATION: The heterologous ChAdOx1 nCov-19-BNT162b2 immunisation with 10-12-week interval, recommended in Germany, is well tolerated and improves immunogenicity compared with homologous ChAdOx1 nCov-19 vaccination with 10-12-week interval and BNT162b2 vaccination with 3-week interval. Heterologous prime-boost immunisation strategies for COVID-19 might be generally applicable. FUNDING: Forschungsnetzwerk der Universitätsmedizin zu COVID-19, the German Ministry of Education and Research, Zalando SE.


Subject(s)
BNT162 Vaccine/immunology , COVID-19 , ChAdOx1 nCoV-19/immunology , Immunogenicity, Vaccine , Antibodies, Viral/blood , COVID-19/prevention & control , Germany , Health Personnel , Humans , Immunoglobulin G/blood , Neutralization Tests , Prospective Studies , SARS-CoV-2 , Vaccination
20.
Front Immunol ; 12: 690698, 2021.
Article in English | MEDLINE | ID: covidwho-1317227

ABSTRACT

Patients with kidney failure have notoriously weak responses to common vaccines. Thus, immunogenicity of novel SARS-CoV-2 vaccines might be impaired in this group. To determine immunogenicity of SARS-CoV-2 vaccination in patients with chronic dialysis, we analyzed the humoral and T-cell response after two doses of mRNA vaccine Tozinameran (BNT162b2 BioNTech/Pfizer). This observational study included 43 patients on dialysis before vaccination with two doses of Tozinameran 21 days apart. Overall, 36 patients completed the observation period until three weeks after the second dose and 32 patients were further analyzed at week 10. Serum samples were analyzed by SARS-CoV-2 specific IgG and IgA antibodies ~1, ~3-4 and ~10 weeks after the second vaccination. In addition, SARS-CoV-2-specific T-cell responses were assessed at ~3-4 weeks by an interferon-gamma release assay (IGRA). Antibody and T cell outcomes at this timepoint were compared to a group of 44 elderly patients not on dialysis, after immunization with Tozinameran. Median age of patients on chronic dialysis was 74.0 years (IQR 66.0, 82.0). The proportion of males was higher (69.4%) than females. Only 20/36 patients (55.6%, 95%CI: 38.29-71.67) developed SARS-CoV-2-IgG antibodies at the first sampling, whereas 32/36 patients (88.9%, 95%CI: 73.00-96.38) demonstrated IgG detection at the second sampling. In a longitudinal follow-up at ~10 weeks after the second dose, the proportion of dialysis patients reactive for anti-SARS-CoV-2-IgG decreased to 27/32 (84.37%, 95%CI: 66.46-94.10) The proportion of anti-SARS-CoV-2 S1 IgA decreased from 33/36 (91.67%; 95%CI: 76.41-97.82) at weeks 3-4 down to 19/32 (59.38; 95%CI: 40.79-75.78). Compared to a cohort of vaccinees with similar age but not on chronic dialysis seroconversion rates and antibody titers were significantly lower. SARS-CoV-2-specific T-cell responses 3 weeks after second vaccination were detected in 21/31 vaccinated dialysis patients (67.7%, 95%CI: 48.53-82.68) compared to 42/44 (93.3%, 95%CI: 76.49-98.84) in controls of similar age. Patients on dialysis demonstrate a delayed, but robust immune response three to four weeks after the second dose, which indicates effective vaccination of this vulnerable group. However, the lower immunogenicity of Tozinameran in these patients needs further attention to develop potential countermeasures such as an additional booster vaccination.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Renal Dialysis , SARS-CoV-2/immunology , Vaccination/methods , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine , COVID-19/blood , COVID-19/virology , Female , Follow-Up Studies , Humans , Immunity , Immunoglobulin A/blood , Immunoglobulin G/blood , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL